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1. Introduction

The completeness of the modal logic S4 for all topological spaces, in
which the modal operator box, [, is interpreted as interior, was proved by
McKinsey and Tarski in [9]. In this seminal work, they showed that the
Stone representation theorem for Boolean algebras [13] extends to algebra
with operators to give a topological semantics for propositional modal logic in
which the necessity operation box, [1, is modeled by taking the interior of an
arbitrary subset of a topological space. In this theorem, the embedding
function assigns each elements of Boolean algebra to an ultrafilter of that
algebra. This topological interpretation is extended to arbitrary theories of
first-order logic by way of different approaches; for example, see [1], [2], [7] and
[8]. There are several methods to prove completeness of modal logics; these are
the classical Kripke semantics, the Fitting tableaux semantics (see [5] and [6])
and the topological semantics (see [11]). All these semantics are analyzed in
great details in [10], and partially in [12].

2. Preliminaries

In this section, we introduce basic notations of propositional modal logic;
for more, for example, see [4] and [3].

The basic modal language can be defined different ways, depending
on the choice of Boolean connectives and modal operators box , [1, and
diamond, ¢. T hroughout B will denote the set of propositional letters or
atomic propositions of propositional calculus, and the constants “T” and “ 1~
will mean “true” and “false”, respectively.

Definition 1. The basic modal language L consists of (infinitely countable
set) B and the connectives 1, —, (1.
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Definition 2. Formulas of Lare defined inductively as follows:
(@) Every p € B is a formula.
(b) The constant L is a formula.
(c) If ¢ and y are formulas, then so is ¢ — .
(d) If ¢ is a formula, then so is [ ¢.
We denote by 3 the set of formulas of £
The following standard abbreviations are to be noted:
—|§0:§0—)J_, T :—|J_,
Ay ==(p—>-y),
poy=(p>y)A(y— @) and 0p = —l-p.
Definition 3. A subset of £ of J;is a logic, if it includes all classical
tautologies and closed under Modus Ponens, i.e., for all ¢, v € J; ¢ € £ and
@ —ye Limplies w e L.
Definition 4. A logic £ is normal if it contains the schema
(K) H(p 2y) = (e —>Ly)
and is closed under the Necessity Rule
(N) for each ¢ € 3, @ € L implies [| pe L.
The smallest (minimal) normal logic K contains all tautologies, (K), (N),
and Dual : 0¢p = —[1—¢ and is closed under modus ponens and uniform
substitution.
Various logics are produced by adding to K suitable constraints.
Constraints that interest us are the following:
B:op ->00p, E:0p 5000, G: 00 —100¢.
In Section 3, we shall prove completeness of the logics B = K + B, Kb =K
+ E, and G =K +G.
Definition 5. A relational structure (also a Kripke model or simply a
modal model) is a triple M =< W,R, V> where W is a nonempty set (of
possible worlds), R is a binary relation on W (called the accessibility
relation) and V is a function from B to P(B) (called a valuation mapping).
The pair <W,R > is called a Kripke frame or a frame and is denoted by 3.
Definition 6. Truth of a modal formula ¢ at W in a model 9t=< W,
R, V>, denoted by I, w = ¢, is defined inductively as follows:

e MWEDP iff w e V(p) forpeP.

e MWETand I, wi L.

e MWE ¢ iff W, W~ 0.

e MWE @Ay iff M, w = @ and W, w F w.
e MWEo@vVy iff WM, w = @ordt, wFE .

e M wE (p— p) iff M, WwE @ =M wEp).
e MwEle iff vu e W(WRu = 9, w FE ¢).
o M wEOp iff Ju e W(WRU A M, w FE @).
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If a formula ¢ is true at all points of a model Mt, then it is said to
be true in MWt and is denoted by MW | @. Otherwise, it is said to be false
and denoted by MijE .

Definition 7. A formula ¢ is said to be valid in a frame 3 = <W,R >, or
3 validates ¢, denoted by I | ¢, if for all valuations V : 8 — P(8B), < W,
R,V>F o

We shall need some properties of the accessibility relation R in the
sequel.

Definition 8. Let 3 = <W,R> be a frame. Then I is

(1) serial if R is serial:

vwe W3Ju e W : wRu.
(2) Euclidean if R is Euclidean:

vw,u, s e W(WRu AWRs = uRS).
(3) weakly directed if R is weakly directed:

vw,u,s € W((WRu AwWRs) = 3e W(uRtA
sRt)).
Definition 9. Let 9t = <W,R,V > be a model and let U be a subset of W
. Then U is definable in M if U = (9)™ = {w e W| M, w [ ¢}, for some ¢
e 3. Let € be a class of frames. A subset S of 3 defines € if
I el e Vpe ST E o).
We shall see that logics B, K5, and G define the class of symmetric frames,
the class of Euclidean frames, and the class of weakly directed frames,
respectively.
Definition 10. Let £ be a logic and € a class of frames. L is said to be
sound with respect to € if, for every ¢ €3, = € ¢ and L is said to be
complete with respect to € if, for each ¢ €3, CF ¢ =, 0.
For example, it is shown that S4 is sound and complete with respect
to the class of all reflexive and transitive frames. It is this work that
motivated researches in this direction.

3.  Soundnessand Completeness of B, K5 and G

Showing a logic is complete with respect to a class € can be done by so-
called “canonical model method”. W hat we have to do is to showing that the
canonical model of the logic is in the class €. Showing soundness is in general
straightforward, and we shall carry out it only for B. Before, we copy out
some definitions and results.

Definition 11. Let £ be a logic. Then -, @ means that ¢ is derivable in
L. If Xis a set of £ -formulas, we write Z - ¢ if F (y, A---Ay) — o for
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some finite formulas v, - - -, y, from X. And if J is a frame, we write 3 F X

for 3 |E ¢ for every ¢ e X.

Definition 12. A set of formulas X is consistent provided £ + L. X is a
maximally consistent set if ¥ is consistent and for each ¢ €J; either ¢ € X or
— @ e X. Equivalently, ¥ is maximally consistent if maximally consistent X is
consistent and every T" such that X CT is inconsistent.

Proposition 1. Let £ be an maximally consistent set. Then the
following hold:

1) If - ¢, then @ € X.

2) —peX iff pe X.

() f peX and ¢ >y € X, then y e X.

4) oAy eX iff ¢@eXand yeX.

B) pvyeX iff @peZoryeX
Lemma 1. (Lindenbaum’s Lemma) Every consistent set can be extended
to a maximally consistent set.

Definition 13. The canonical model for the minimal modal logic K is the
model MM = < W RS, V¢> where

(1) W€ = {= | = is a maximally consistent set}.

(2Q)ZR°Aiff 3 ={p|pe T}CA.

BV =L=|pe=}

Remark 1 The set of worlds W® in the canonical model of K is a
superset of the set of possible worlds in the canonical model of any other
logical system. Thus, if we vary the system, we modify the class of maximally
consistent sets, hence we get different canonical models. So proving
completeness of a logic is basically showing that if we take a subclass of K-
worlds, we shall see that the accessibility relation RC defined in Definition
3.4(2) will turn out to be serial, transitive, reflexive, Euclidean etc. with
respect to that subclass, depending on logic.

Theorem 1. The logic B = K +E is sound and complete with respect to
the class of all symmetric models, i.e., models whose frame are symmetric.
Proof. Soundness: Let 9t = < W, R, V> be any symmetric model, and let
w € W. Suppose that 3t, w = ¢ such that wRu. Since R is symmetric, we
have URw. As ¢ is trueat W, ¢ ¢ is true at u for any u such that wRu. But
this means that (10 ¢ is trueatw. Thus, ¢ — [10 ¢ is valid on all symmetric
frames. Now according to the well-known result:

If £ is any set of modal formulas and < W, R > is a frame on which
each formula in X is valid, then every theorem of K + X is valid on <W,R >.
If follows that B is sound with respectto the class of all symmetric frames.

Completeness: To show the completeness of B with respect to the
class of all symmetric models, it will be enough to show that the canonical
model for B is a symmetric model. We do this by showing that the relation R
is symmetric when consistency is to be B-consistency. R is symmetric if and
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only if xRy implies yRx for any x, y. Thus, the accessibility relation R® in the
canonical model of B is symmetric if and only if the following holds:

If =R°A then AR“T for any maximally consistent set =, A. But this is
translated into the following by Definition 3.4(2):

IfE ={o | Upe Z}y<=A,then A ={o | lp € A} X But
we can give another reformulation of {¢ | [1pe A} < X as follows:

If o ¢ Xthenllp ¢ A.

Thus R® will be symmetricif {o | Hpe Z}=A, thengp ¢ = =20p ¢ A.
Now suppose €@ |[lpe Z} = A and ¢ ¢ X. Then by maximality of X (see
Proposition 3.1(2)), we have —¢p € X. FromB: ¢ — [10 ¢, we get —¢p —
[10—¢ (B is closed under uniform substitution). Now from Proposition
3.1(3) we have that —@p— [10—@p € £ and —¢p < X implies [10—p € .
But {o | [T € X} S A means 0—¢p < A, and by Dual: & =—[1—, this
means that —[1¢p < A. Hence by maximality of A we get [1¢p ¢ A, and the
proof is complete.

Remark 2 Using Dual ¢ =—[1—, we can rewrite E: Op — [10¢ as
—[1=¢ — [1=l1-e¢, and substituting —¢ for ¢ and applying the double
law for negation, we obtain the equivalent of E : —[ 1o — [ =[] ¢.

Lemma 2. Let £ be a normal modal logic. If —[l@— [I=l]¢, then the
canonical model of £ is Euclidean. In other words, £ is complete with respect
to the class of all Euclidean models. f all symmetric models, i.e., models whose
frame are symmetric.

Proof. Suppose that -, —[1p— [1-[1ep. We want to show that for
maximally consistent sets =, A and T, if SR°A and = R°T then AR°T..

Suppose that SR°A and ZRT. Then by definition of R®, we have { ¢
[T € T}y Aand{e |[Tpope A} <T. Now suppose that [TpeA. If
@ ¢ T, then —@p € T by maximality of . This implies that [Tp¢ %, and
hence —[1¢ € X again by maximality of £. Since —[1¢p — [1-[1p € X by
hypothesis, and X is closed under Modus Ponens (see Proposition 3.1(3)), it
follows that [1—-[1¢ eX. This implies that —[1¢p €A, a contradiction with
the fact that [1¢p < A. Hence ¢ < T, as desired.

Now let us put L = K5 = K + E. Then we have the following
theorem whose proof follows from Lemma 3.2.

Theorem 2. The logic K5 = K + E is sound and complete with respect to
the class of all Euclidean models.

Finally, we prove that the logic G = K + G where G : 01 — [10¢p
is sound and complete. The axiom schema G is translated by the accessibility
relation which is weakly directed. Such a relation is also called incestual in [4]
and convergent in [12]. These relations are of interest in modeling belief and
knowledge.

Theorem 3. The logic G = K + G is sound and complete with respect to the
class of all weakly directed models.
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Proof. We shall prove that the canonical model for G is an incestual model.
Recall that a relation R is incestual if and only if Vw,u,s € W((WRu A wRs) =
3t € W(uRt AsRt)). In terms of RS, this is translated as:

M {e [Hp eZ}cA,

@)L |l eZ}<=T.Then

B {e |lpeAr Ae|llepel}
is consistent. Here (1) means ZR°A, (2) means =R°T, and (3) implies that the
set of possible worlds accessible from A and the set of worlds accessible from
I' must have at least a member in common. Now we are proving that R® is
incestual.

Suppose to the contrary that the set (3) is not consistent. Then for
some [ € A, some [1y e T, the set { @, w}isnot consistent, i.e.,

@ Fe—(pAy).
We have the following steps:

1. 0lp eX (by (1))

2.0y eX (by [l €T and ZR°T)
3. [0we X (by 2. and G)

4.0l ANOw) eX (by 1. and 3., and Th(K))
5 00(p Ayw) eX (by Th(K))

6. (= (@ Ay) €X (by (@) and (N))

7. 200(p ANy) eX (by Dual).

But since X is (maximal) consistent, we get a contradiction. Therefore, (3) is
consistent, so R is incestual, i.e. the canonical model for G is a convergent
model; thus G is complete.

4. Conclusion

We provided simple proofs for the completeness of the normal modal logics
B, K5 and G. We think that we simplified existing proofs, of completeness
for these logics, generally complicated.
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Bozi normal modal mantiqlorin tamhg haqqda
Giilsah Onar
XULASO

Isdo bozi B, K5 vo G normal modal montiqlorin tamliginin sado
isbatlar1 verilir.
Acar sozlar: Tamliq, normal modal montiq.

O MOJITHOTE HEKOTOPBIX HOPMAJIBHBIX MOJAJBHBIX JIOTHK
T'ommmax Ouep
PE3IOME

B pabGore maercss mpoCThIE JI0KAa3aTEIbCTBA IIOJHOTHI HEKOTOPHIX
HOpMaJbHBIX MOJabHBIX Joruk B, K5 u G.
Karuessle ciaoBa: [TonHoTa, HOpMaibHasE MOJAJIbHAS JIOTHKA

24


http://ocw.unit.edu/terms

